RUS  ENG
Полная версия
ЖУРНАЛЫ // Symmetry, Integrability and Geometry: Methods and Applications // Архив

SIGMA, 2020, том 16, 030, 5 стр. (Mi sigma1567)

Эта публикация цитируется в 3 статьях

NNSC-Cobordism of Bartnik Data in High Dimensions

Xue Hua, Yuguang Shib

a Department of Mathematics, College of Information Science and Technology, Jinan University, Guangzhou, 510632, P.R. China
b Key Laboratory of Pure and Applied Mathematics, School of Mathematical Sciences, Peking University, Beijing, 100871, P.R. China

Аннотация: In this short note, we formulate three problems relating to nonnegative scalar curvature (NNSC) fill-ins. Loosely speaking, the first two problems focus on: When are $(n-1)$-dimensional Bartnik data $\big(\Sigma_i ^{n-1}, \gamma_i, H_i\big)$, $i=1,2$, NNSC-cobordant? (i.e., there is an $n$-dimensional compact Riemannian manifold $\big(\Omega^n, g\big)$ with scalar curvature $R(g)\geq 0$ and the boundary $\partial \Omega=\Sigma_{1} \cup \Sigma_{2}$ such that $\gamma_i$ is the metric on $\Sigma_i ^{n-1}$ induced by $g$, and $H_i$ is the mean curvature of $\Sigma_i$ in $\big(\Omega^n, g\big)$). If $\big(\mathbb{S}^{n-1},\gamma_{\rm std},0\big)$ is positive scalar curvature (PSC) cobordant to $\big(\Sigma_1 ^{n-1}, \gamma_1, H_1\big)$, where $\big(\mathbb{S}^{n-1}, \gamma_{\rm std}\big)$ denotes the standard round unit sphere then $\big(\Sigma_1 ^{n-1}, \gamma_1, H_1\big)$ admits an NNSC fill-in. Just as Gromov's conjecture is connected with positive mass theorem, our problems are connected with Penrose inequality, at least in the case of $n=3$. Our third problem is on $\Lambda\big(\Sigma^{n-1}, \gamma\big)$ defined below.

Ключевые слова: scalar curvature, NNSC-cobordism, quasi-local mass, fill-ins.

MSC: 53C20, 83C99

Поступила: 22 января 2020 г.; в окончательном варианте 13 апреля 2020 г.; опубликована 20 апреля 2020 г.

Язык публикации: английский

DOI: 10.3842/SIGMA.2020.030



Реферативные базы данных:
ArXiv: 2001.05607


© МИАН, 2024