Эта публикация цитируется в
15 статьях
Higher Rank $\hat{Z}$ and $F_K$
Sunghyuk Park California Institute of Technology, Pasadena, USA
Аннотация:
We study
$q$-series-valued invariants of
$3$-manifolds that depend on the choice of a root system
$G$. This is a natural generalization of the earlier works by Gukov–Pei–Putrov–Vafa [arXiv:
1701.06567] and Gukov–Manolescu [arXiv:
1904.06057] where they focused on
$G={\rm SU}(2)$ case. Although a full mathematical definition for these “invariants” is lacking yet, we define
$\hat{Z}^G$ for negative definite plumbed
$3$-manifolds and
$F_K^G$ for torus knot complements. As in the
$G={\rm SU}(2)$ case by Gukov and Manolescu, there is a surgery formula relating
$F_K^G$ to
$\hat{Z}^G$ of a Dehn surgery on the knot
$K$. Furthermore, specializing to symmetric representations,
$F_K^G$ satisfies a recurrence relation given by the quantum
$A$-polynomial for symmetric representations, which hints that there might be HOMFLY-PT analogues of these
$3$-manifold invariants.
Ключевые слова:
$3$-manifold, knot, quantum invariant, complex Chern–Simons theory, TQFT, $q$-series, colored Jones polynomial, colored HOMFLY-PT polynomial.
MSC: 57K16,
57K31,
81R50 Поступила: 15 января 2020 г.; в окончательном варианте
11 мая 2020 г.; опубликована
24 мая 2020 г.
Язык публикации: английский
DOI:
10.3842/SIGMA.2020.044