Аннотация:
We review the notion of submanifold algebra, as introduced by T. Masson, and discuss some properties and examples. A submanifold algebra of an associative algebra $A$ is a quotient algebra $B$ such that all derivations of $B$ can be lifted to $A$. We will argue that in the case of smooth functions on manifolds every quotient algebra is a submanifold algebra, derive a topological obstruction when the algebras are deformation quantizations of symplectic manifolds, present some (commutative and noncommutative) examples and counterexamples.
Ключевые слова:submanifold algebras, tangential star products, coisotropic reduction.