RUS  ENG
Полная версия
ЖУРНАЛЫ // Symmetry, Integrability and Geometry: Methods and Applications // Архив

SIGMA, 2020, том 16, 051, 15 стр. (Mi sigma1588)

Эта публикация цитируется в 4 статьях

Dual Invertible Polynomials with Permutation Symmetries and the Orbifold Euler Characteristic

Wolfgang Ebelinga, Sabir M. Gusein-Zadeb

a Leibniz Universität Hannover, Institut für Algebraische Geometrie, Postfach 6009, D-30060 Hannover, Germany
b Moscow State University, Faculty of Mechanics and Mathematics, Moscow, GSP-1, 119991, Russia

Аннотация: P. Berglund, T. Hübsch, and M. Henningson proposed a method to construct mirror symmetric Calabi–Yau manifolds. They considered a pair consisting of an invertible polynomial and of a finite (abelian) group of its diagonal symmetries together with a dual pair. A. Takahashi suggested a method to generalize this construction to symmetry groups generated by some diagonal symmetries and some permutations of variables. In a previous paper, we explained that this construction should work only under a special condition on the permutation group called parity condition (PC). Here we prove that, if the permutation group is cyclic and satisfies PC, then the reduced orbifold Euler characteristics of the Milnor fibres of dual pairs coincide up to sign.

Ключевые слова: group action, invertible polynomial, orbifold Euler characteristic, mirror symmetry, Berglund–Hübsch–Henningson–Takahashi duality.

MSC: 14J33, 57R18, 32S55

Поступила: 29 июля 2019 г.; в окончательном варианте 1 июня 2020 г.; опубликована 11 июня 2020 г.

Язык публикации: английский

DOI: 10.3842/SIGMA.2020.051



Реферативные базы данных:
ArXiv: 1907.11421


© МИАН, 2024