RUS  ENG
Полная версия
ЖУРНАЛЫ // Symmetry, Integrability and Geometry: Methods and Applications // Архив

SIGMA, 2020, том 16, 053, 21 стр. (Mi sigma1590)

Addition of Divisors on Hyperelliptic Curves via Interpolation Polynomials

Julia Bernatskaa, Yaacov Kopeliovichb

a National University of Kyiv-Mohyla Academy, 2 Skovorody Str., Kyiv, 04655, Ukraine
b University of Connecticut, 2100 Hillside Rd, Storrs Mansfield, 06269, USA

Аннотация: Two problems are addressed: reduction of an arbitrary degree non-special divisor to the equivalent divisor of the degree equal to genus of a curve, and addition of divisors of arbitrary degrees. The hyperelliptic case is considered as the simplest model. Explicit formulas defining reduced divisors for some particular cases are found. The reduced divisors are obtained in the form of solution of the Jacobi inversion problem which provides the way of computing Abelian functions on arbitrary non-special divisors. An effective reduction algorithm is proposed, which has the advantage that it involves only arithmetic operations on polynomials. The proposed addition algorithm contains more details comparing with the known in cryptography, and is extended to divisors of arbitrary degrees comparing with the known in the theory of hyperelliptic functions.

Ключевые слова: reduced divisor, inverse divisor, non-special divisor, generalised Jacobi inversion problem.

MSC: 32Q30, 14G50

Поступила: 5 февраля 2020 г.; в окончательном варианте 29 мая 2020 г.; опубликована 14 июня 2020 г.

Язык публикации: английский

DOI: 10.3842/SIGMA.2020.053



Реферативные базы данных:
ArXiv: 1912.13277


© МИАН, 2024