RUS  ENG
Полная версия
ЖУРНАЛЫ // Symmetry, Integrability and Geometry: Methods and Applications // Архив

SIGMA, 2020, том 16, 057, 14 стр. (Mi sigma1594)

On Frobenius' Theta Formula

Alessio Fiorentino, Riccardo Salvati Manni

Sapienza Università di Roma, Italy

Аннотация: Mumford's well-known characterization of the hyperelliptic locus of the moduli space of ppavs in terms of vanishing and non-vanishing theta constants is based on Neumann's dynamical system. Poor's approach to the characterization uses the cross ratio. A key tool in both methods is Frobenius' theta formula, which follows from Riemann's theta formula. In a 2004 paper Grushevsky gives a different characterization in terms of cubic equations in second order theta functions. In this note we first show the connection between the methods by proving that Grushevsky's cubic equations are strictly related to Frobenius' theta formula and we then give a new proof of Mumford's characterization via Gunning's multisecant formula.

Ключевые слова: hyperelliptic curves, theta functions, Jacobians of hyperelliptic curves, Kummer variety.

MSC: 14H42, 14H45, 14K25, 14K12, 14H40

Поступила: 14 апреля 2020 г.; в окончательном варианте 11 июня 2020 г.; опубликована 17 июня 2020 г.

Язык публикации: английский

DOI: 10.3842/SIGMA.2020.057



Реферативные базы данных:
ArXiv: 2004.05099


© МИАН, 2024