RUS  ENG
Полная версия
ЖУРНАЛЫ // Symmetry, Integrability and Geometry: Methods and Applications // Архив

SIGMA, 2020, том 16, 060, 30 стр. (Mi sigma1597)

Эта публикация цитируется в 12 статьях

Multi-Component Extension of CAC Systems

Dan-Da Zhanga, Peter H. van der Kampb, Da-Jun Zhangc

a School of Mathematics and Statistics, Ningbo University, Ningbo 315211, P.R. China
b Department of Mathematics and Statistics, La Trobe University, Victoria 3086, Australia
c Department of Mathematics, Shanghai University, Shanghai 200444, P.R. China

Аннотация: In this paper an approach to generate multi-dimensionally consistent $N$-component systems is proposed. The approach starts from scalar multi-dimensionally consistent quadrilateral systems and makes use of the cyclic group. The obtained $N$-component systems inherit integrable features such as Bäcklund transformations and Lax pairs, and exhibit interesting aspects, such as nonlocal reductions. Higher order single component lattice equations (on larger stencils) and multi-component discrete Painlevé equations can also be derived in the context, and the approach extends to $N$-component generalizations of higher dimensional lattice equations.

Ключевые слова: lattice equations, consistency around the cube, cyclic group, multi-component, Lax pair, Bäcklund transformation, nonlocal.

MSC: 37K60

Поступила: 7 декабря 2019 г.; в окончательном варианте 14 июня 2020 г.; опубликована 1 июля 2020 г.

Язык публикации: английский

DOI: 10.3842/SIGMA.2020.060



Реферативные базы данных:
ArXiv: 1912.00713


© МИАН, 2024