RUS  ENG
Полная версия
ЖУРНАЛЫ // Symmetry, Integrability and Geometry: Methods and Applications // Архив

SIGMA, 2020, том 16, 066, 15 стр. (Mi sigma1603)

Эта публикация цитируется в 6 статьях

Dendriform Algebras Relative to a Semigroup

Marcelo Aguiar

Department of Mathematics, Cornell University, Ithaca, NY 14853, USA

Аннотация: Loday's dendriform algebras and its siblings pre-Lie and zinbiel have received attention over the past two decades. In recent literature, there has been interest in a generalization of these types of algebra in which each individual operation is replaced by a family of operations indexed by a fixed semigroup $S$. The purpose of this note is twofold. First, we add to the existing work by showing that a similar extension is possible already for the most familiar types of algebra: commutative, associative, and Lie. Second, we show that these concepts arise naturally and in a unified manner from a categorical perspective. For this, one simply has to consider the standard types of algebra but in reference to the monoidal category of $S$-graded vector spaces.

Ключевые слова: dendriform algebra, monoidal category, dimonoidal category.

MSC: 17A30, 18C40, 18M05

Поступила: 9 апреля 2020 г.; в окончательном варианте 29 июня 2020 г.; опубликована 11 июля 2020 г.

Язык публикации: английский

DOI: 10.3842/SIGMA.2020.066



Реферативные базы данных:
ArXiv: 2003.11127


© МИАН, 2024