RUS  ENG
Полная версия
ЖУРНАЛЫ // Symmetry, Integrability and Geometry: Methods and Applications // Архив

SIGMA, 2020, том 16, 086, 13 стр. (Mi sigma1623)

Эта публикация цитируется в 1 статье

Uniform Lower Bound for Intersection Numbers of $\psi$-Classes

Vincent Delecroixa, Élise Goujardb, Peter Zografcd, Anton Zorichef

a LaBRI, Domaine universitaire, 351 cours de la Libération, 33405 Talence, France
b Institut de Mathématiques de Bordeaux, Université de Bordeaux, 351 cours de la Libération, 33405 Talence, France
c Steklov Mathematical Institute, Fontanka 27, St. Petersburg 191023, Russia
d Chebyshev Laboratory, St. Petersburg State University, 14th Line V.O. 29B, St. Petersburg, 199178, Russia
e Center for Advanced Studies, Skoltech, Russia
f Institut de Mathématiques de Jussieu – Paris Rive Gauche, Bâtiment Sophie Germain, Case 7012, 8 Place Aurélie Nemours, 75205 PARIS Cedex 13, France

Аннотация: We approximate intersection numbers $\big\langle \psi_1^{d_1}\cdots \psi_n^{d_n}\big\rangle_{g,n}$ on Deligne–Mumford's moduli space $\overline{\mathcal{M}}_{g,n}$ of genus $g$ stable complex curves with $n$ marked points by certain closed-form expressions in $d_1,\dots,d_n$. Conjecturally, these approximations become asymptotically exact uniformly in $d_i$ when $g\to\infty$ and $n$ remains bounded or grows slowly. In this note we prove a lower bound for the intersection numbers in terms of the above-mentioned approximating expressions multiplied by an explicit factor $\lambda(g,n)$, which tends to $1$ when $g\to\infty$ and $d_1+\dots+d_{n-2}=o(g)$.

Ключевые слова: intersection numbers, $\psi$-classes, Witten–Kontsevich correlators, moduli space of curves, large genus asymptotics.

MSC: 14C17, 14H70

Поступила: 9 апреля 2020 г.; в окончательном варианте 21 августа 2020 г.; опубликована 26 августа 2020 г.

Язык публикации: английский

DOI: 10.3842/SIGMA.2020.086



Реферативные базы данных:
ArXiv: 2004.02749


© МИАН, 2025