Аннотация:
We study the twisted Hochschild homology of quantum flag manifolds, the twist being the modular automorphism of the Haar state. We prove that every quantum flag manifold admits a non-trivial class in degree two, with an explicit representative defined in terms of a certain projection. The corresponding classical two-form, via the Hochschild–Kostant–Rosenberg theorem, is identified with a Kähler form on the flag manifold.
Ключевые слова:quantum flag manifolds, twisted Hochschild homology, Kähler forms.