RUS  ENG
Полная версия
ЖУРНАЛЫ // Symmetry, Integrability and Geometry: Methods and Applications // Архив

SIGMA, 2020, том 16, 102, 13 стр. (Mi sigma1639)

Triangle Groups: Automorphic Forms and Nonlinear Differential Equations

Sujay K. Ashoka, Dileep P. Jatkarb, Madhusudhan Ramanc

a Institute of Mathematical Sciences, Homi Bhabha National Institute (HBNI), IV Cross Road, C.I.T. Campus, Taramani, Chennai 600 113, India
b Harish-Chandra Research Institute, Homi Bhabha National Institute (HBNI), Chhatnag Road, Jhunsi, Allahabad 211 019, India
c Department of Theoretical Physics, Tata Institute of Fundamental Research, Homi Bhabha Road, Navy Nagar, Colaba, Mumbai 400 005, India

Аннотация: We study the relations governing the ring of quasiautomorphic forms associated to triangle groups with a single cusp, thereby extending our earlier results on Hecke groups. The Eisenstein series associated to these triangle groups are shown to satisfy Ramanujan-like identities. These identities in turn allow us to associate a nonlinear differential equation to each triangle group. We show that they are solved by the quasiautomorphic Eisenstein series associated to the triangle group and its orbit under the group action. We conclude by discussing the Painlevé property of these nonlinear differential equations.

Ключевые слова: triangle groups, Chazy equations, Painlevé analysis.

MSC: 34M55, 11F12, 33E30

Поступила: 21 апреля 2020 г.; в окончательном варианте 5 октября 2020 г.; опубликована 11 октября 2020 г.

Язык публикации: английский

DOI: 10.3842/SIGMA.2020.102



Реферативные базы данных:
ArXiv: 2004.06035


© МИАН, 2025