RUS  ENG
Полная версия
ЖУРНАЛЫ // Symmetry, Integrability and Geometry: Methods and Applications // Архив

SIGMA, 2020, том 16, 107, 13 стр. (Mi sigma1644)

Quasi-Invariants in Characteristic $p$ and Twisted Quasi-Invariants

Michael Rena, Xiaomeng Xub

a Department of Mathematics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
b School of Mathematical Sciences and Beijing International Center for Mathematical Research, Peking University, Beijing 100871, China

Аннотация: The spaces of quasi-invariant polynomials were introduced by Chalykh and Veselov [Comm. Math. Phys. 126 (1990), 597–611]. Their Hilbert series over fields of characteristic 0 were computed by Feigin and Veselov [Int. Math. Res. Not. 2002 (2002), 521–545]. In this paper, we show some partial results and make two conjectures on the Hilbert series of these spaces over fields of positive characteristic. On the other hand, Braverman, Etingof and Finkelberg [arXiv:1611.10216] introduced the spaces of quasi-invariant polynomials twisted by a monomial. We extend some of their results to the spaces twisted by a smooth function.

Ключевые слова: quasi-invariant polynomials, twisted quasi-invariants.

MSC: 81R12, 20C08

Поступила: 10 июля 2020 г.; в окончательном варианте 17 октября 2020 г.; опубликована 27 октября 2020 г.

Язык публикации: английский

DOI: 10.3842/SIGMA.2020.107



Реферативные базы данных:
ArXiv: 1907.13417


© МИАН, 2025