RUS  ENG
Полная версия
ЖУРНАЛЫ // Symmetry, Integrability and Geometry: Methods and Applications // Архив

SIGMA, 2020, том 16, 110, 36 стр. (Mi sigma1647)

Эта публикация цитируется в 10 статьях

Flat Structure on the Space of Isomonodromic Deformations

Mitsuo Katoa, Toshiyuki  Manob, Jiro Sekiguchic

a Department of Mathematics, College of Educations, University of the Ryukyus, Japan
b Department of Mathematical Sciences, Faculty of Science, University of the Ryukyus, Japan
c Department of Mathematics, Faculty of Engineering, Tokyo University of Agriculture and Technology, Japan

Аннотация: Flat structure was introduced by K. Saito and his collaborators at the end of 1970's. Independently the WDVV equation arose from the 2D topological field theory. B. Dubrovin unified these two notions as Frobenius manifold structure. In this paper, we study isomonodromic deformations of an Okubo system, which is a special kind of systems of linear differential equations. We show that the space of independent variables of such isomonodromic deformations can be equipped with a Saito structure (without a metric), which was introduced by C. Sabbah as a generalization of Frobenius manifold. As its consequence, we introduce flat basic invariants of well-generated finite complex reflection groups and give explicit descriptions of Saito structures (without metrics) obtained from algebraic solutions to the sixth Painlevé equation.

Ключевые слова: flat structure, Frobenius manifold, WDVV equation, complex reflection group, Painlevé equation.

MSC: 34M56, 33E17, 35N10, 32S25

Поступила: 19 марта 2020 г.; в окончательном варианте 21 октября 2020 г.; опубликована 3 ноября 2020 г.

Язык публикации: английский

DOI: 10.3842/SIGMA.2020.110



Реферативные базы данных:
ArXiv: 1511.01608


© МИАН, 2024