RUS  ENG
Полная версия
ЖУРНАЛЫ // Symmetry, Integrability and Geometry: Methods and Applications // Архив

SIGMA, 2007, том 3, 039, 19 стр. (Mi sigma165)

Эта публикация цитируется в 9 статьях

$N$-Wave Equations with Orthogonal Algebras: $\mathbb Z_2$ and $\mathbb Z_2\times\mathbb Z_2$ Reductions and Soliton Solutions

Vladimir S. Gerdjikova, Nikolay A. Kostovab, Tihomir I. Valcheva

a Institute for Nuclear Research and Nuclear Energy, Bulgarian Academy of Sciences, 72 Tsarigradsko chaussee, 1784 Sofia, Bulgaria
b Institute of Electronics, Bulgarian Academy of Sciences, 72 Tsarigradsko chaussee, 1784 Sofia, Bulgaria

Аннотация: We consider $N$-wave type equations related to the orthogonal algebras obtained from the generic ones via additional reductions. The first $\mathbb Z_2$-reduction is the canonical one. We impose a second $\mathbb Z_2$-reduction and consider also the combined action of both reductions. For all three types of $N$-wave equations we construct the soliton solutions by appropriately modifying the Zakharov–Shabat dressing method. We also briefly discuss the different types of one-soliton solutions. Especially rich are the types of one-soliton solutions in the case when both reductions are applied. This is due to the fact that we have two diferent configurations of eigenvalues for the Lax operator $L$: doublets, which consist of pairs of purely imaginary eigenvalues, and quadruplets. Such situation is analogous to the one encountered in the sine-Gordon case, which allows two types of solitons: kinks and breathers. A new physical system, describing Stokes-anti Stokes Raman scattering is obtained. It is represented by a $4$-wave equation related to the $\mathbf B_2$ algebra with a canonical $\mathbb Z_2$ reduction.

Ключевые слова: solitons; Hamiltonian systems.

MSC: 37K15; 17B70; 37K10; 17B80

Поступила: 21 ноября 2006 г.; в окончательном варианте 8 февраля 2007 г.; опубликована 3 марта 2007 г.

Язык публикации: английский

DOI: 10.3842/SIGMA.2007.039



Реферативные базы данных:
ArXiv: nlin.SI/0703002


© МИАН, 2025