RUS  ENG
Полная версия
ЖУРНАЛЫ // Symmetry, Integrability and Geometry: Methods and Applications // Архив

SIGMA, 2020, том 16, 113, 31 стр. (Mi sigma1651)

Эта публикация цитируется в 1 статье

$q$-Difference Systems for the Jackson Integral of Symmetric Selberg Type

Masahiko Ito

Department of Mathematical Sciences, University of the Ryukyus, Okinawa 903-0213, Japan

Аннотация: We provide an explicit expression for the first order $q$-difference system for the Jackson integral of symmetric Selberg type. The $q$-difference system gives a generalization of $q$-analog of contiguous relations for the Gauss hypergeometric function. As a basis of the system we use a set of the symmetric polynomials introduced by Matsuo in his study of the $q$-KZ equation. Our main result is an explicit expression for the coefficient matrix of the $q$-difference system in terms of its Gauss matrix decomposition. We introduce a class of symmetric polynomials called interpolation polynomials, which includes Matsuo's polynomials. By repeated use of three-term relations among the interpolation polynomials we compute the coefficient matrix.

Ключевые слова: $q$-difference equations, Selberg type integral, contiguous relations, Gauss decomposition.

MSC: 33D60, 39A13

Поступила: 29 апреля 2020 г.; в окончательном варианте 29 октября 2020 г.; опубликована 8 ноября 2020 г.

Язык публикации: английский

DOI: 10.3842/SIGMA.2020.113



Реферативные базы данных:
ArXiv: 1910.08393


© МИАН, 2025