RUS  ENG
Полная версия
ЖУРНАЛЫ // Symmetry, Integrability and Geometry: Methods and Applications // Архив

SIGMA, 2020, том 16, 115, 8 стр. (Mi sigma1653)

The Full Symmetric Toda Flow and Intersections of Bruhat Cells

Yuri B. Chernyakovabc, Georgy I. Sharyginbda, Alexander S. Sorinbef, Dmitry V. Talalaevdga

a Institute for Theoretical and Experimental Physics, Bolshaya Cheremushkinskaya 25, 117218 Moscow, Russia
b Joint Institute for Nuclear Research, Bogoliubov Laboratory of Theoretical Physics, 141980 Dubna, Moscow region, Russia
c Institute for Information Transmission Problems, Bolshoy Karetny per. 19, build. 1, 127994, Moscow, Russia
d Lomonosov Moscow State University, Faculty of Mechanics and Mathematics, GSP-1, 1 Leninskiye Gory, Main Building, 119991 Moscow, Russia
e National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), Kashirskoye shosse 31, 115409 Moscow, Russia
f Dubna State University, 141980 Dubna, Moscow region, Russia
g Centre of integrable systems, P.G. Demidov Yaroslavl State University, 150003, 14 Sovetskaya Str., Yaroslavl, Russia

Аннотация: In this short note we show that the Bruhat cells in real normal forms of semisimple Lie algebras enjoy the same property as their complex analogs: for any two elements $w$$w'$ in the Weyl group $W(\mathfrak g)$, the corresponding real Bruhat cell $X_w$ intersects with the dual Bruhat cell $Y_{w'}$ iff $w\prec w'$ in the Bruhat order on $W(\mathfrak g)$. Here $\mathfrak g$ is a normal real form of a semisimple complex Lie algebra $\mathfrak g_\mathbb C$. Our reasoning is based on the properties of the Toda flows rather than on the analysis of the Weyl group action and geometric considerations.

Ключевые слова: Lie groups, Bruhat order, integrable systems, Toda flow.

MSC: 22E15, 70H06

Поступила: 13 июля 2020 г.; в окончательном варианте 2 ноября 2020 г.; опубликована 11 ноября 2020 г.

Язык публикации: английский

DOI: 10.3842/SIGMA.2020.115



Реферативные базы данных:
ArXiv: 1810.09622


© МИАН, 2024