Аннотация:
The principal angles between binary collision subspaces in an $N$-billiard system in $d$-dimensional Euclidean space are computed. These angles are computed for equal masses and arbitrary masses. We then provide a bound on the number of collisions in the planar 3-billiard system problem. Comparison of this result with known billiard collision bounds in lower dimensions is discussed.
Ключевые слова:mathematical billiards, angles between subspaces, counting collisions.