RUS  ENG
Полная версия
ЖУРНАЛЫ // Symmetry, Integrability and Geometry: Methods and Applications // Архив

SIGMA, 2020, том 16, 124, 15 стр. (Mi sigma1661)

Эта публикация цитируется в 2 статьях

Further Results on a Function Relevant for Conformal Blocks

Vincent Comeaua, Jean-François Fortinb, Witold Skibac

a Department of Physics, McGill University, Montréal, QC H3A 2T8, Canada
b Département de Physique, de Génie Physique et d'Optique,Université Laval, Québec, QC G1V 0A6, Canada
c Department of Physics, Yale University, New Haven, CT 06520, USA

Аннотация: We present further mathematical results on a function appearing in the conformal blocks of four-point correlation functions with arbitrary primary operators. The $H$-function was introduced in a previous article and it has several interesting properties. We prove explicitly the recurrence relation as well as the $D_6$-invariance presented previously. We also demonstrate the proper action of the differential operator used to construct the $H$-function.

Ключевые слова: special functions, conformal field theory.

MSC: 33C70, 33C65, 33C90, 81T40

Поступила: 7 июля 2020 г.; в окончательном варианте 24 ноября 2020 г.; опубликована 30 ноября 2020 г.

Язык публикации: английский

DOI: 10.3842/SIGMA.2020.124



Реферативные базы данных:
ArXiv: 1902.08598


© МИАН, 2024