Аннотация:
In this paper, we introduce the notion of a (regular) Hom-Lie group. We associate a Hom-Lie algebra to a Hom-Lie group and show that every regular Hom-Lie algebra is integrable. Then, we define a Hom-exponential ($\mathsf{Hexp}$) map from the Hom-Lie algebra of a Hom-Lie group to the Hom-Lie group and discuss the universality of this $\mathsf{Hexp}$ map. We also describe a Hom-Lie group action on a smooth manifold. Subsequently, we give the notion of an adjoint representation of a Hom-Lie group on its Hom-Lie algebra. At last, we integrate the Hom-Lie algebra $(\mathfrak{gl}(V),[\cdot,\cdot],\mathsf{Ad})$, and the derivation Hom-Lie algebra of a Hom-Lie algebra.