RUS  ENG
Полная версия
ЖУРНАЛЫ // Symmetry, Integrability and Geometry: Methods and Applications // Архив

SIGMA, 2020, том 16, 145, 25 стр. (Mi sigma1681)

Representations of Quantum Affine Algebras in their $R$-Matrix Realization

Naihuan Jinga, Ming Liub, Alexander Molevc

a Department of Mathematics, North Carolina State University, Raleigh, NC 27695, USA
b School of Mathematics, South China University of Technology, Guangzhou, 510640, China
c School of Mathematics and Statistics, University of Sydney, NSW 2006, Australia

Аннотация: We use the isomorphisms between the $R$-matrix and Drinfeld presentations of the quantum affine algebras in types $B$, $C$ and $D$ produced in our previous work to describe finite-dimensional irreducible representations in the $R$-matrix realization. We also review the isomorphisms for the Yangians of these types and use Gauss decomposition to establish an equivalence of the descriptions of the representations in the $R$-matrix and Drinfeld presentations of the Yangians.

Ключевые слова: $R$-matrix presentation, Drinfeld polynomials, highest weight representation, Gauss decomposition.

MSC: 17B37

Поступила: 19 августа 2020 г.; в окончательном варианте 25 декабря 2020 г.; опубликована 28 декабря 2020 г.

Язык публикации: английский

DOI: 10.3842/SIGMA.2020.145



Реферативные базы данных:
ArXiv: 2008.07847


© МИАН, 2024