RUS  ENG
Полная версия
ЖУРНАЛЫ // Symmetry, Integrability and Geometry: Methods and Applications // Архив

SIGMA, 2021, том 17, 002, 25 стр. (Mi sigma1684)

Эта публикация цитируется в 2 статьях

A Fully Noncommutative Painlevé II Hierarchy: Lax Pair and Solutions Related to Fredholm Determinants

Sofia Tarriconeab

a Department of Mathematics and Statistics, Concordia University, 1455 de Maisonneuve W., Montréal, Québec, Canada, H3G 1M8
b LAREMA, UMR 6093, UNIV Angers, CNRS, SFR Math-Stic, France

Аннотация: We consider Fredholm determinants of matrix Hankel operators associated to matrix versions of the $n$-th Airy functions. Using the theory of integrable operators, we relate them to a fully noncommutative Painlevé II hierarchy, defined through a matrix-valued version of the Lenard operators. In particular, the Riemann–Hilbert techniques used to study these integrable operators allows to find a Lax pair for each member of the hierarchy. Finally, the coefficients of the Lax matrices are explicitly written in terms of the matrix-valued Lenard operators and some solutions of the hierarchy are written in terms of Fredholm determinants of the square of the matrix Airy Hankel operators.

Ключевые слова: Painlevé II hierarchy, Airy Hankel operator, Riemann–Hilbert problem, Lax pairs.

MSC: 34M56, 35Q15, 47B35, 33C10

Поступила: 25 июля 2020 г.; в окончательном варианте 31 декабря 2020 г.; опубликована 5 января 2021 г.

Язык публикации: английский

DOI: 10.3842/SIGMA.2021.002



Реферативные базы данных:
ArXiv: 2007.05707


© МИАН, 2024