RUS  ENG
Полная версия
ЖУРНАЛЫ // Symmetry, Integrability and Geometry: Methods and Applications // Архив

SIGMA, 2021, том 17, 003, 14 стр. (Mi sigma1685)

The Expansion of Wronskian Hermite Polynomials in the Hermite Basis

Codruţ Grosua, Corina Grosub

a Google Zürich, Brandschenkestrasse 110, Zürich, Switzerland
b Department of Applied Mathematics, Politehnica University of Bucharest, Splaiul Independentei 313, Bucharest, Romania

Аннотация: We express Wronskian Hermite polynomials in the Hermite basis and obtain an explicit formula for the coefficients. From this we deduce an upper bound for the modulus of the roots in the case of partitions of length 2. We also derive a general upper bound for the modulus of the real and purely imaginary roots. These bounds are very useful in the study of irreducibility of Wronskian Hermite polynomials. Additionally, we generalize some of our results to a larger class of polynomials.

Ключевые слова: Wronskian, Hermite polynomials, Schrödinger operator.

MSC: 26C10, 30C15, 34L40

Поступила: 8 июля 2020 г.; в окончательном варианте 4 января 2021 г.; опубликована 9 января 2021 г.

Язык публикации: английский

DOI: 10.3842/SIGMA.2021.003



Реферативные базы данных:
ArXiv: 2006.15534


© МИАН, 2024