Эта публикация цитируется в
5 статьях
Topological $\mathrm{T}$-Duality for Twisted Tori
Paolo Aschieriabc,
Richard J. Szaboadecf a Arnold–Regge Centre, Via P. Giuria 1, 10125 Torino, Italy
b Istituto Nazionale di Fisica Nucleare, Torino, Via P. Giuria 1, 10125 Torino, Italy
c Dipartimento di Scienze e Innovazione Tecnologica, Università del Piemonte Orientale, Viale T. Michel 11, 15121 Alessandria, Italy
d Department of Mathematics, Heriot-Watt University,
Colin Maclaurin Building, Riccarton, Edinburgh EH14 4AS, UK
e Higgs Centre for Theoretical Physics, Edinburgh, UK
f Maxwell Institute for Mathematical Sciences, Edinburgh, UK
Аннотация:
We apply the
$C^*$-algebraic formalism of topological
$\mathrm{T}$-duality due to Mathai and Rosenberg to a broad class of topological spaces that include the torus bundles appearing in string theory compactifications with duality twists, such as nilmanifolds, as well as many other examples. We develop a simple procedure in this setting for constructing the
$\mathrm{T}$-duals starting from a commutative
$C^*$-algebra with an action of
${\mathbb R}^n$. We treat the general class of almost abelian solvmanifolds in arbitrary dimension in detail, where we provide necessary and sufficient criteria for the existence of classical
$\mathrm{T}$-duals in terms of purely group theoretic data, and compute them explicitly as continuous-trace algebras with non-trivial Dixmier–Douady classes. We prove that any such solvmanifold has a topological
$\mathrm{T}$-dual given by a
$C^*$-algebra bundle of noncommutative tori, which we also compute explicitly. The monodromy of the original torus bundle becomes a Morita equivalence among the fiber algebras, so that these
$C^*$-algebras rigorously describe the
$\mathrm{T}$-folds from non-geometric string theory.
Ключевые слова:
noncommutative $C^*$-algebraic $\mathrm{T}$-duality, nongeometric backgrounds, Mostow fibration of almost abelian solvmanifolds, $C^*$-algebra bundles of noncommutative tori.
MSC: 46L55,
81T30,
16D90 Поступила: 30 июня 2020 г.; в окончательном варианте
22 января 2021 г.; опубликована
5 февраля 2021 г.
Язык публикации: английский
DOI:
10.3842/SIGMA.2021.012