Аннотация:
We study the properties of the $n$-volumic scalar curvature in this note. Lott–Sturm–Villani's curvature-dimension condition ${\rm CD}(\kappa,n)$ was showed to imply Gromov's $n$-volumic scalar curvature $\geq n\kappa$ under an additional $n$-dimensional condition and we show the stability of $n$-volumic scalar curvature $\geq \kappa$ with respect to smGH-convergence. Then we propose a new weighted scalar curvature on the weighted Riemannian manifold and show its properties.