RUS  ENG
Полная версия
ЖУРНАЛЫ // Symmetry, Integrability and Geometry: Methods and Applications // Архив

SIGMA, 2021, том 17, 016, 19 стр. (Mi sigma1699)

Эта публикация цитируется в 6 статьях

Exceptional Legendre Polynomials and Confluent Darboux Transformations

María Ángeles García-Ferreroa, David Gómez-Ullatebc, Robert Milsond

a Institut für Angewandte Mathematik, Ruprecht-Karls-Universität Heidelberg, Im Neunheimer Feld 205, 69120 Heidelberg, Germany
b Departamento de Ingeniería Informática, Escuela Superior de Ingenierıa, Universidad de Cádiz, 11519 Puerto Real, Spain
c Departamento de Física Teórica, Universidad Complutense de Madrid, 28040 Madrid, Spain
d Department of Mathematics and Statistics, Dalhousie University, Halifax, NS, B3H 3J5, Canada

Аннотация: Exceptional orthogonal polynomials are families of orthogonal polynomials that arise as solutions of Sturm–Liouville eigenvalue problems. They generalize the classical families of Hermite, Laguerre, and Jacobi polynomials by allowing for polynomial sequences that miss a finite number of “exceptional” degrees. In this paper we introduce a new construction of multi-parameter exceptional Legendre polynomials by considering the isospectral deformation of the classical Legendre operator. Using confluent Darboux transformations and a technique from inverse scattering theory, we obtain a fully explicit description of the operators and polynomials in question. The main novelty of the paper is the novel construction that allows for exceptional polynomial families with an arbitrary number of real parameters.

Ключевые слова: exceptional orthogonal polynomials, Darboux transformations, isospectral deformations.

MSC: 33C47, 34L10, 34A05

Поступила: 22 сентября 2020 г.; в окончательном варианте 3 февраля 2021 г.; опубликована 20 февраля 2021 г.

Язык публикации: английский

DOI: 10.3842/SIGMA.2021.016



Реферативные базы данных:
ArXiv: 2008.02822


© МИАН, 2024