RUS  ENG
Полная версия
ЖУРНАЛЫ // Symmetry, Integrability and Geometry: Methods and Applications // Архив

SIGMA, 2021, том 17, 029, 31 стр. (Mi sigma1712)

Эта публикация цитируется в 2 статьях

Twisted Traces and Positive Forms on Quantized Kleinian Singularities of Type A

Pavel Etingofa, Daniil Klyueva, Eric Rainsb, Douglas Strykera

a Department of Mathematics, Massachusetts Institute of Technology, USA
b Department of Mathematics, California Institute of Technology, Pasadena, CA 91125, USA

Аннотация: Following [Beem C., Peelaers W., Rastelli L., Comm. Math. Phys. 354 (2017), 345–392] and [Etingof P., Stryker D., SIGMA 16 (2020), 014, 28 pages], we undertake a detailed study of twisted traces on quantizations of Kleinian singularities of type $A_{n-1}$. In particular, we give explicit integral formulas for these traces and use them to determine when a trace defines a positive Hermitian form on the corresponding algebra. This leads to a classification of unitary short star-products for such quantizations, a problem posed by Beem, Peelaers and Rastelli in connection with 3-dimensional superconformal field theory. In particular, we confirm their conjecture that for $n\le 4$ a unitary short star-product is unique and compute its parameter as a function of the quantization parameters, giving exact formulas for the numerical functions by Beem, Peelaers and Rastelli. If $n=2$, this, in particular, recovers the theory of unitary spherical Harish-Chandra bimodules for ${\mathfrak{sl}}_2$. Thus the results of this paper may be viewed as a starting point for a generalization of the theory of unitary Harish-Chandra bimodules over enveloping algebras of reductive Lie algebras [Vogan Jr. D.A., Annals of Mathematics Studies, Vol. 118, Princeton University Press, Princeton, NJ, 1987] to more general quantum algebras. Finally, we derive recurrences to compute the coefficients of short star-products corresponding to twisted traces, which are generalizations of discrete Painlevé systems.

Ключевые слова: star-product, orthogonal polynomial, quantization, trace.

MSC: 16W70, 33C47

Поступила: 22 сентября 2020 г.; в окончательном варианте 8 марта 2021 г.; опубликована 25 марта 2021 г.

Язык публикации: английский

DOI: 10.3842/SIGMA.2021.029



Реферативные базы данных:
ArXiv: 2009.09437


© МИАН, 2024