Эта публикация цитируется в
2 статьях
Twisted Traces and Positive Forms on Quantized Kleinian Singularities of Type A
Pavel Etingofa,
Daniil Klyueva,
Eric Rainsb,
Douglas Strykera a Department of Mathematics, Massachusetts Institute of Technology, USA
b Department of Mathematics, California Institute of Technology, Pasadena, CA 91125, USA
Аннотация:
Following [Beem C., Peelaers W., Rastelli L.,
Comm. Math. Phys. 354 (2017), 345–392] and [Etingof P., Stryker D.,
SIGMA 16 (2020), 014, 28 pages], we undertake a detailed study of twisted traces on quantizations of Kleinian singularities of type
$A_{n-1}$. In particular, we give explicit integral formulas for these traces and use them to determine when a trace defines a positive Hermitian form on the corresponding algebra. This leads to a classification of unitary short star-products for such quantizations, a problem posed by Beem, Peelaers and Rastelli in connection with 3-dimensional superconformal field theory. In particular, we confirm their conjecture that for
$n\le 4$ a unitary short star-product is unique and compute its parameter as a function of the quantization parameters, giving exact formulas for the numerical functions by Beem, Peelaers and Rastelli. If
$n=2$, this, in particular, recovers the theory of unitary spherical Harish-Chandra bimodules for
${\mathfrak{sl}}_2$. Thus the results of this paper may be viewed as a starting point for a generalization of the theory of unitary Harish-Chandra bimodules over enveloping algebras of reductive Lie algebras [Vogan Jr. D.A.,
Annals of Mathematics Studies, Vol. 118, Princeton University Press, Princeton, NJ, 1987] to more general quantum algebras. Finally, we derive recurrences to compute the coefficients of short star-products corresponding to twisted traces, which are generalizations of discrete Painlevé systems.
Ключевые слова:
star-product, orthogonal polynomial, quantization, trace.
MSC: 16W70,
33C47 Поступила: 22 сентября 2020 г.; в окончательном варианте
8 марта 2021 г.; опубликована
25 марта 2021 г.
Язык публикации: английский
DOI:
10.3842/SIGMA.2021.029