RUS  ENG
Полная версия
ЖУРНАЛЫ // Symmetry, Integrability and Geometry: Methods and Applications // Архив

SIGMA, 2021, том 17, 038, 9 стр. (Mi sigma1721)

Эта публикация цитируется в 1 статье

The Primitive Derivation and Discrete Integrals

Daisuke Suyamaa, Masahiko Yoshinagab

a Faculty of Integrated Media, Wakkanai Hokusei Gakuen University, 1-2290-28 Wakabadai, Wakkanai, Hokkaido 097-0013, Japan
b Department of Mathematics, Faculty of Science, Hokkaido University, Kita 10, Nishi 8, Kita-Ku, Sapporo 060-0810, Japan

Аннотация: The modules of logarithmic derivations for the (extended) Catalan and Shi arrangements associated with root systems are known to be free. However, except for a few cases, explicit bases for such modules are not known. In this paper, we construct explicit bases for type $A$ root systems. Our construction is based on Bandlow–Musiker's integral formula for a basis of the space of quasiinvariants. The integral formula can be considered as an expression for the inverse of the primitive derivation introduced by K. Saito. We prove that the discrete analogues of the integral formulas provide bases for Catalan and Shi arrangements.

Ключевые слова: hyperplane arrangements, freeness, Catalan arrangements, Shi arrangements.

MSC: 52C35, 20F55

Поступила: 30 сентября 2020 г.; в окончательном варианте 9 апреля 2021 г.; опубликована 13 апреля 2021 г.

Язык публикации: английский

DOI: 10.3842/SIGMA.2021.038



Реферативные базы данных:
ArXiv: 2009.13710


© МИАН, 2024