RUS  ENG
Полная версия
ЖУРНАЛЫ // Symmetry, Integrability and Geometry: Methods and Applications // Архив

SIGMA, 2021, том 17, 041, 20 стр. (Mi sigma1724)

A Decomposition of Twisted Equivariant $K$-Theory

José Manuel Gómez, Johana Ramírez

Escuela de Matemáticas, Universidad Nacional de Colombia, Medellín, Colombia

Аннотация: For $G$ a finite group, a normalized $2$-cocycle $\alpha\in Z^{2}\big(G,{\mathbb S}^{1}\big)$ and $X$ a $G$-space on which a normal subgroup $A$ acts trivially, we show that the $\alpha$-twisted $G$-equivariant $K$-theory of $X$ decomposes as a direct sum of twisted equivariant $K$-theories of $X$ parametrized by the orbits of an action of $G$ on the set of irreducible $\alpha$-projective representations of $A$. This generalizes the decomposition obtained in [Gómez J.M., Uribe B., Internat. J. Math. 28 (2017), 1750016, 23 pages, arXiv:1604.01656] for equivariant $K$-theory. We also explore some examples of this decomposition for the particular case of the dihedral groups $D_{2n}$ with $n\ge 2$ an even integer.

Ключевые слова: twisted equivariant $K$-theory, $K$-theory, finite groups.

MSC: 19L50, 19L47

Поступила: 13 июля 2020 г.; в окончательном варианте 15 апреля 2021 г.; опубликована 21 апреля 2021 г.

Язык публикации: английский

DOI: 10.3842/SIGMA.2021.041



Реферативные базы данных:
ArXiv: 2001.02164


© МИАН, 2024