A Decomposition of Twisted Equivariant $K$-Theory
José Manuel Gómez,
Johana Ramírez Escuela de Matemáticas, Universidad Nacional de Colombia, Medellín, Colombia
Аннотация:
For
$G$ a finite group, a normalized
$2$-cocycle
$\alpha\in Z^{2}\big(G,{\mathbb S}^{1}\big)$ and
$X$ a
$G$-space on which a normal subgroup
$A$ acts trivially, we show that the
$\alpha$-twisted
$G$-equivariant
$K$-theory of
$X$ decomposes as a direct sum of twisted equivariant
$K$-theories of
$X$ parametrized by the orbits of an action of
$G$ on the set of irreducible
$\alpha$-projective representations of
$A$. This generalizes the decomposition obtained in [Gómez J.M., Uribe B.,
Internat. J. Math. 28 (2017), 1750016, 23 pages, arXiv:
1604.01656] for equivariant
$K$-theory. We also explore some examples of this decomposition for the particular case of the dihedral groups
$D_{2n}$ with
$n\ge 2$ an even integer.
Ключевые слова:
twisted equivariant $K$-theory, $K$-theory, finite groups.
MSC: 19L50,
19L47 Поступила: 13 июля 2020 г.; в окончательном варианте
15 апреля 2021 г.; опубликована
21 апреля 2021 г.
Язык публикации: английский
DOI:
10.3842/SIGMA.2021.041