RUS  ENG
Полная версия
ЖУРНАЛЫ // Symmetry, Integrability and Geometry: Methods and Applications // Архив

SIGMA, 2021, том 17, 057, 7 стр. (Mi sigma1740)

Эта публикация цитируется в 3 статьях

Asymptotic Estimation for Eigenvalues in the Exponential Potential and for Zeros of $K_{{\rm i}\nu}(z)$ with Respect to Order

Yuri Krynytskyi, Andrij Rovenchak

Department for Theoretical Physics, Ivan Franko National University of Lviv, Ukraine

Аннотация: The paper presents the derivation of the asymptotic behavior of $\nu$-zeros of the modified Bessel function of imaginary order $K_{{\rm i}\nu}(z)$. This derivation is based on the quasiclassical treatment of the exponential potential on the positive half axis. The asymptotic expression for the $\nu$-zeros (zeros with respect to order) contains the Lambert $W$ function, which is readily available in most computer algebra systems and numerical software packages. The use of this function provides much higher accuracy of the estimation comparing to known relations containing the logarithm, which is just the leading term of $W(x)$ at large $x$. Our result ensures accuracies sufficient for practical applications.

Ключевые слова: quasiclassical approximation, exponential potential, $\nu$-zeros, modified Bessel functions of the second kind, imaginary order, Lambert $W$ function.

MSC: 33C10, 81Q05, 81Q20

Поступила: 15 мая 2021 г.; в окончательном варианте 1 июня 2021 г.; опубликована 10 июня 2021 г.

Язык публикации: английский

DOI: 10.3842/SIGMA.2021.057



Реферативные базы данных:
ArXiv: 2103.01732


© МИАН, 2024