Эта публикация цитируется в	
			18 статьях
				
			
				Integrable $\mathcal{E}$-Models, $4\mathrm{d}$ Chern–Simons Theory and Affine Gaudin Models. I. Lagrangian Aspects
			
			Sylvain Lacroixab, 	
Benoît Vicedoc		a Zentrum für Mathematische Physik, Universität Hamburg,
Bundesstrasse 55, 20146 Hamburg, Germany
					b II. Institut für Theoretische Physik, Universität Hamburg,
Luruper Chaussee 149, 22761 Hamburg, Germany
					c Department of Mathematics, University of York, York YO10 5DD, UK
					
			Аннотация:
			We construct the actions of a very broad family of 
$2\mathrm{d}$ integrable 
$\sigma$-models. Our starting point is a universal 
$2\mathrm{d}$ action obtained in [arXiv:
2008.01829] using the framework of Costello and Yamazaki based on 
$4\mathrm{d}$ Chern–Simons theory. This 
$2\mathrm{d}$ action depends on a pair of 
$2\mathrm{d}$ fields 
$h$ and 
$\mathcal{L}$, with 
$\mathcal{L}$ depending rationally on an auxiliary complex parameter, which are tied together by a constraint. When the latter can be solved for 
$\mathcal{L}$ in terms of 
$h$ this produces a 
$2\mathrm{d}$ integrable field theory for the 
$2\mathrm{d}$ field 
$h$ whose Lax connection is given by 
$\mathcal{L}(h)$. We construct a general class of solutions to this constraint and show that the resulting 
$2\mathrm{d}$ integrable field theories can all naturally be described as 
$\mathcal{E}$-models.
				
			
Ключевые слова:
			$4\mathrm{d}$ Chern–Simons theory, 
$\mathcal E$-models, affine Gaudin models, integrable 
$\sigma$-models.	
			
MSC: 17B80, 
37K05, 
37K10	Поступила: 7 декабря 2020 г.; в окончательном варианте 
31 мая 2021 г.; опубликована 
10 июня 2021 г.	
			Язык публикации: английский	
			
DOI:
			10.3842/SIGMA.2021.058