RUS  ENG
Полная версия
ЖУРНАЛЫ // Symmetry, Integrability and Geometry: Methods and Applications // Архив

SIGMA, 2021, том 17, 071, 14 стр. (Mi sigma1753)

Эта публикация цитируется в 6 статьях

$\mathbb{Z}_2^3$-Graded Extensions of Lie Superalgebras and Superconformal Quantum Mechanics

Shunya Doi, Naruhiko Aizawa

Department of Physical Science, Osaka Prefecture University, Nakamozu Campus, Sakai, Osaka 599-8531, Japan

Аннотация: Quantum mechanical systems whose symmetry is given by $\mathbb{Z}_2^3$-graded version of superconformal algebra are introduced. This is done by finding a realization of a $\mathbb{Z}_2^3$-graded Lie superalgebra in terms of a standard Lie superalgebra and the Clifford algebra. The realization allows us to map many models of superconformal quantum mechanics (SCQM) to their $\mathbb{Z}_2^3$-graded extensions. It is observed that for the simplest SCQM with $\mathfrak{osp}(1|2)$ symmetry there exist two inequivalent $\mathbb{Z}_2^3$-graded extensions. Applying the standard prescription of conformal quantum mechanics, spectrum of the SCQMs with the $\mathbb{Z}_2^3$-graded $\mathfrak{osp}(1|2)$ symmetry is analyzed. It is shown that many models of SCQM can be extended to $\mathbb{Z}_2^n$-graded setting.

Ключевые слова: graded Lie superalgebras, superconformal mechanics.

MSC: 17B75, 17B81, 81R12

Поступила: 24 марта 2021 г.; в окончательном варианте 14 июля 2021 г.; опубликована 20 июля 2021 г.

Язык публикации: английский

DOI: 10.3842/SIGMA.2021.071



Реферативные базы данных:
ArXiv: 2103.10638


© МИАН, 2024