RUS  ENG
Полная версия
ЖУРНАЛЫ // Symmetry, Integrability and Geometry: Methods and Applications // Архив

SIGMA, 2021, том 17, 076, 24 стр. (Mi sigma1758)

Эта публикация цитируется в 3 статьях

Quantum Representation of Affine Weyl Groups and Associated Quantum Curves

Sanefumi Moriyamaa, Yasuhiko Yamadab

a Department of Physics/OCAMI/NITEP, Osaka City University, Sugimoto, Osaka 558-8585, Japan
b Department of Mathematics, Kobe University, Rokko, Kobe 657-8501, Japan

Аннотация: We study a quantum (non-commutative) representation of the affine Weyl group mainly of type $E_8^{(1)}$, where the representation is given by birational actions on two variables $x$$y$ with $q$-commutation relations. Using the tau variables, we also construct quantum “fundamental” polynomials $F(x,y)$ which completely control the Weyl group actions. The geometric properties of the polynomials $F(x,y)$ for the commutative case is lifted distinctively in the quantum case to certain singularity structures as the $q$-difference operators. This property is further utilized as the characterization of the quantum polynomials $F(x,y)$. As an application, the quantum curve associated with topological strings proposed recently by the first named author is rederived by the Weyl group symmetry. The cases of type $D_5^{(1)}$, $E_6^{(1)}$, $E_7^{(1)}$ are also discussed.

Ключевые слова: affine Weyl group, quantum curve, Painlevé equation.

MSC: 39A06, 39A13

Поступила: 13 мая 2021 г.; в окончательном варианте 4 августа 2021 г.; опубликована 15 августа 2021 г.

Язык публикации: английский

DOI: 10.3842/SIGMA.2021.076



Реферативные базы данных:
ArXiv: 2104.06661


© МИАН, 2024