RUS  ENG
Полная версия
ЖУРНАЛЫ // Symmetry, Integrability and Geometry: Methods and Applications // Архив

SIGMA, 2021, том 17, 077, 13 стр. (Mi sigma1759)

Эта публикация цитируется в 1 статье

Second-Order Differential Operators in the Limit Circle Case

Dmitri R. Yafaevabc

a St. Petersburg University, 7/9 Universitetskaya Emb., St. Petersburg, 199034, Russia
b Université de Rennes, CNRS, IRMAR-UMR 6625, F-35000 Rennes, France
c Sirius University of Science and Technology, 1 Olympiysky Ave., Sochi, 354340, Russia

Аннотация: We consider symmetric second-order differential operators with real coefficients such that the corresponding differential equation is in the limit circle case at infinity. Our goal is to construct the theory of self-adjoint realizations of such operators by an analogy with the case of Jacobi operators. We introduce a new object, the quasiresolvent of the maximal operator, and use it to obtain a very explicit formula for the resolvents of all self-adjoint realizations. In particular, this yields a simple representation for the Cauchy–Stieltjes transforms of the spectral measures playing the role of the classical Nevanlinna formula in the theory of Jacobi operators.

Ключевые слова: second-order differential equations, minimal and maximal differential operators, self-adjoint extensions, quasiresolvents, resolvents.

MSC: 33C45, 39A70, 47A40, 47B39

Поступила: 20 мая 2021 г.; в окончательном варианте 14 августа 2021 г.; опубликована 16 августа 2021 г.

Язык публикации: английский

DOI: 10.3842/SIGMA.2021.077



Реферативные базы данных:
ArXiv: 2105.08641


© МИАН, 2024