Эта публикация цитируется в
2 статьях
An Expansion Formula for Decorated Super-Teichmüller Spaces
Gregg Musiker,
Nicholas Ovenhouse,
Sylvester W. Zhang School of Mathematics, University of Minnesota, Minneapolis, MN 55455, USA
Аннотация:
Motivated by the definition of super-Teichmüller spaces, and Penner–Zeitlin's recent extension of this definition to decorated super-Teichmüller space, as examples of super Riemann surfaces, we use the super Ptolemy relations to obtain formulas for super
$\lambda$-lengths associated to arcs in a bordered surface. In the special case of a disk, we are able to give combinatorial expansion formulas for the super
$\lambda$-lengths associated to diagonals of a polygon in the spirit of Ralf Schiffler's
$T$-path formulas for type
$A$ cluster algebras. We further connect our formulas to the super-friezes of Morier-Genoud, Ovsienko, and Tabachnikov, and obtain partial progress towards defining super cluster algebras of type
$A_n$. In particular, following Penner–Zeitlin, we are able to get formulas (up to signs) for the
$\mu$-invariants associated to triangles in a triangulated polygon, and explain how these provide a step towards understanding odd variables of a super cluster algebra.
Ключевые слова:
cluster algebras, Laurent polynomials, decorated Teichmüller spaces, supersymmetry.
MSC: 13F60,
17A70,
30F60 Поступила: 31 марта 2021 г.; в окончательном варианте
27 августа 2021 г.; опубликована
1 сентября 2021 г.
Язык публикации: английский
DOI:
10.3842/SIGMA.2021.080