RUS  ENG
Полная версия
ЖУРНАЛЫ // Symmetry, Integrability and Geometry: Methods and Applications // Архив

SIGMA, 2021, том 17, 081, 25 стр. (Mi sigma1763)

Quantization of Calogero–Painlevé System and Multi-Particle Quantum Painlevé Equations II–VI

Fatane Mobasheraminia, Marco Bertolaab

a Department of Mathematics and Statistics, Concordia University, 1455 de Maisonneuve W., Montreal, QC H3G 1M8, Canada
b SISSA, Area of Mathematics, via Bonomea 265, Trieste, Italy

Аннотация: We consider the isomonodromic formulation of the Calogero–Painlevé multi-particle systems and proceed to their canonical quantization. We then proceed to the quantum Hamiltonian reduction on a special representation to radial variables, in analogy with the classical case and also with the theory of quantum Calogero equations. This quantized version is compared to the generalization of a result of Nagoya on integral representations of certain solutions of the quantum Painlevé equations. We also provide multi-particle generalizations of these integral representations.

Ключевые слова: quantization of Painlevé, Calogero–Painlevé, Harish-Chandra isomorphism.

MSC: 70H08, 81R12

Поступила: 19 марта 2021 г.; в окончательном варианте 31 августа 2021 г.; опубликована 7 сентября 2021 г.

Язык публикации: английский

DOI: 10.3842/SIGMA.2021.081



Реферативные базы данных:
ArXiv: 2103.09681


© МИАН, 2024