RUS  ENG
Полная версия
ЖУРНАЛЫ // Symmetry, Integrability and Geometry: Methods and Applications // Архив

SIGMA, 2021, том 17, 083, 40 стр. (Mi sigma1765)

Resolvent Trace Formula and Determinants of $\boldsymbol{n}$ Laplacians on Orbifold Riemann Surfaces

Lee-Peng Teo

Department of Mathematics, Xiamen University Malaysia, Jalan Sunsuria, Bandar Sunsuria, 43900, Sepang, Selangor, Malaysia

Аннотация: For $n$ a nonnegative integer, we consider the $n$-Laplacian $\Delta_n$ acting on the space of $n$-differentials on a confinite Riemann surface $X$ which has ramification points. The trace formula for the resolvent kernel is developed along the line à la Selberg. Using the trace formula, we compute the regularized determinant of $\Delta_n+s(s+2n-1)$, from which we deduce the regularized determinant of $\Delta_n$, denoted by $\det\!'\Delta_n$. Taking into account the contribution from the absolutely continuous spectrum, $\det\!'\Delta_n$ is equal to a constant $\mathcal{C}_n$ times $Z(n)$ when $n\geq 2$. Here $Z(s)$ is the Selberg zeta function of $X$. When $n=0$ or $n=1$, $Z(n)$ is replaced by the leading coefficient of the Taylor expansion of $Z(s)$ around $s=0$ and $s=1$ respectively. The constants $\mathcal{C}_n$ are calculated explicitly. They depend on the genus, the number of cusps, as well as the ramification indices, but is independent of the moduli parameters.

Ключевые слова: determinant of Laplacian, $n$-differentials, cocompact Riemann surfaces, Selberg trace formula.

MSC: 14H15, 11F72, 11M36

Поступила: 7 апреля 2021 г.; в окончательном варианте 5 сентября 2021 г.; опубликована 13 сентября 2021 г.

Язык публикации: английский

DOI: 10.3842/SIGMA.2021.083



Реферативные базы данных:
ArXiv: 2104.00895


© МИАН, 2025