Resolvent Trace Formula and Determinants of $\boldsymbol{n}$ Laplacians on Orbifold Riemann Surfaces
Lee-Peng Teo Department of Mathematics, Xiamen University Malaysia, Jalan Sunsuria, Bandar Sunsuria, 43900, Sepang, Selangor, Malaysia
Аннотация:
For
$n$ a nonnegative integer, we consider the
$n$-Laplacian
$\Delta_n$ acting on the space of
$n$-differentials on a confinite Riemann surface
$X$ which has ramification points. The trace formula for the resolvent kernel is developed along the line à la Selberg. Using the trace formula, we compute the regularized determinant of
$\Delta_n+s(s+2n-1)$, from which we deduce the regularized determinant of
$\Delta_n$, denoted by
$\det\!'\Delta_n$. Taking into account the contribution from the absolutely continuous spectrum,
$\det\!'\Delta_n$ is equal to a constant
$\mathcal{C}_n$ times
$Z(n)$ when
$n\geq 2$. Here
$Z(s)$ is the Selberg zeta function of
$X$. When
$n=0$ or
$n=1$,
$Z(n)$ is replaced by the leading coefficient of the Taylor expansion of
$Z(s)$ around
$s=0$ and
$s=1$ respectively. The constants
$\mathcal{C}_n$ are calculated explicitly. They depend on the genus, the number of cusps, as well as the ramification indices, but is independent of the moduli parameters.
Ключевые слова:
determinant of Laplacian, $n$-differentials, cocompact Riemann surfaces, Selberg trace formula.
MSC: 14H15,
11F72,
11M36 Поступила: 7 апреля 2021 г.; в окончательном варианте
5 сентября 2021 г.; опубликована
13 сентября 2021 г.
Язык публикации: английский
DOI:
10.3842/SIGMA.2021.083