RUS  ENG
Полная версия
ЖУРНАЛЫ // Symmetry, Integrability and Geometry: Methods and Applications // Архив

SIGMA, 2021, том 17, 093, 19 стр. (Mi sigma1775)

Эта публикация цитируется в 2 статьях

A Revisit to the ABS $\mathrm{H2}$ Equation

Aye Aye Cho, Maebel Mesfun, Da-Jun Zhang

Department of Mathematics, Shanghai University, Shanghai 200444, P.R. China

Аннотация: In this paper we revisit the Adler–Bobenko–Suris $\mathrm{H2}$ equation. The $\mathrm{H2}$ equation is linearly related to the $S^{(0,0)}$ and $S^{(1,0)}$ variables in the Cauchy matrix scheme. We elaborate the coupled quad-system of $S^{(0,0)}$ and $S^{(1,0)}$ in terms of their $3$-dimensional consistency, Lax pair, bilinear form and continuum limits. It is shown that $S^{(1,0)}$ itself satisfies a $9$-point lattice equation and in continuum limit $S^{(1,0)}$ is related to the eigenfunction in the Lax pair of the Korteweg–de Vries equation.

Ключевые слова: $\mathrm{H2}$ equation, consistent around cube, Cauchy matrix approach, continuum limit, KdV equation.

MSC: 35Q51, 35Q55, 37K60

Поступила: 25 июня 2021 г.; в окончательном варианте 13 октября 2021 г.; опубликована 18 октября 2021 г.

Язык публикации: английский

DOI: 10.3842/SIGMA.2021.093



Реферативные базы данных:
ArXiv: 2106.12835


© МИАН, 2024