RUS  ENG
Полная версия
ЖУРНАЛЫ // Symmetry, Integrability and Geometry: Methods and Applications // Архив

SIGMA, 2021, том 17, 095, 16 стр. (Mi sigma1777)

Эта публикация цитируется в 1 статье

Real Liouvillian Extensions of Partial Differential Fields

Teresa Crespoa, Zbigniew Hajtob, Rouzbeh Mohsenib

a Departament de Matemátiques i Informática, Universitat de Barcelona, Gran Via de les Corts Catalanes 585, 08007 Barcelona, Spain
b Faculty of Mathematics and Computer Science, Jagiellonian University, ul. Łojasiewicza 6, 30-348 Kraków, Poland

Аннотация: In this paper, we establish Galois theory for partial differential systems defined over formally real differential fields with a real closed field of constants and over formally $p$-adic differential fields with a $p$-adically closed field of constants. For an integrable partial differential system defined over such a field, we prove that there exists a formally real (resp. formally $p$-adic) Picard–Vessiot extension. Moreover, we obtain a uniqueness result for this Picard–Vessiot extension. We give an adequate definition of the Galois differential group and obtain a Galois fundamental theorem in this setting. We apply the obtained Galois correspondence to characterise formally real Liouvillian extensions of real partial differential fields with a real closed field of constants by means of split solvable linear algebraic groups. We present some examples of real dynamical systems and indicate some possibilities of further development of algebraic methods in real dynamical systems.

Ключевые слова: real Liouvillan extension, real and $p$-adic Picard–Vessiot theory, split solvable algebraic group, gradient dynamical systems, integrability.

MSC: 12H05, 37J35, 12D15, 14P05

Поступила: 28 февраля 2021 г.; в окончательном варианте 25 октября 2021 г.; опубликована 29 октября 2021 г.

Язык публикации: английский

DOI: 10.3842/SIGMA.2021.095



Реферативные базы данных:
ArXiv: 2104.09548


© МИАН, 2024