Аннотация:
We state and prove that a certain class of smooth functions said to be BH-separable is a meagre subset for the Fréchet topology. Because these functions are the only admissible Hamiltonians for Arnold–Liouville systems admitting a bi-Hamiltonian structure, we get that, generically, Arnold–Liouville systems cannot be bi-Hamiltonian. At the end of the paper, we determine, both as a concrete representation of our general result and as an illustrative list, which polynomial Hamiltonians $H$ of the form $H(x,y)=xy+ax^3+bx^2y+cxy^2+dy^3$ are BH-separable.