RUS  ENG
Полная версия
ЖУРНАЛЫ // Symmetry, Integrability and Geometry: Methods and Applications // Архив

SIGMA, 2021, том 17, 096, 17 стр. (Mi sigma1778)

Generically, Arnold–Liouville Systems Cannot be Bi-Hamiltonian

Hassan Boualema, Robert Brouzetb

a IMAG, Université de Montpellier, France
b LAMPS, EA 4217, Université Perpignan Via Domitia, France

Аннотация: We state and prove that a certain class of smooth functions said to be BH-separable is a meagre subset for the Fréchet topology. Because these functions are the only admissible Hamiltonians for Arnold–Liouville systems admitting a bi-Hamiltonian structure, we get that, generically, Arnold–Liouville systems cannot be bi-Hamiltonian. At the end of the paper, we determine, both as a concrete representation of our general result and as an illustrative list, which polynomial Hamiltonians $H$ of the form $H(x,y)=xy+ax^3+bx^2y+cxy^2+dy^3$ are BH-separable.

Ключевые слова: completely integrable Hamiltonian system, Arnold–Liouville theorem, action-angle coordinates, bi-Hamiltonian system, separability of functions, change of coordinates, Fréchet topology, meagre set.

MSC: 26A21, 26B35, 26B40, 37J35, 37J39, 58K15, 70H06

Поступила: 24 мая 2021 г.; в окончательном варианте 22 октября 2021 г.; опубликована 29 октября 2021 г.

Язык публикации: английский

DOI: 10.3842/SIGMA.2021.096



Реферативные базы данных:
ArXiv: 2105.11123


© МИАН, 2024