Аннотация:
In this paper we study invariant almost Hermitian geometry on generalized flag manifolds. We will focus on providing examples of Kähler like scalar curvature metric, that is, almost Hermitian structures $(g,J)$ satisfying $s=2s_{\rm C}$, where $s$ is Riemannian scalar curvature and $s_{\rm C}$ is the Chern scalar curvature.
Ключевые слова:curvature of almost Hermitian structures, generalized flag manifolds, Kähler like scalar curvature.