Эта публикация цитируется в	
			4 статьях
				
			
				Orthogonal Polynomial Stochastic Duality Functions for Multi-Species SEP$(2j)$ and Multi-Species IRW
			
			Zhengye Zhou		 Department of Mathematics, Texas A&M University, College Station, TX 77840, USA
					
			Аннотация:
			We obtain orthogonal polynomial self-duality functions for multi-species version of the symmetric exclusion process (SEP
$(2j)$) and the independent random walker process (IRW) on a finite undirected graph. In each process, we have 
$n>1$ species of particles. In addition, we allow up to 
$2j$ particles to occupy each site in the multi-species SEP
$(2j)$. The duality functions for the multi-species SEP
$(2j)$ and the multi-species IRW come from unitary intertwiners between different 
$*$-representations of the special linear Lie algebra 
$\mathfrak{sl}_{n+1}$ and the Heisenberg Lie algebra 
$\mathfrak{h}_n$, respectively. The analysis leads to multivariate Krawtchouk polynomials as orthogonal duality functions for the multi-species SEP
$(2j)$ and homogeneous products of Charlier polynomials as orthogonal duality functions for the multi-species IRW.
				
			
Ключевые слова:
			orthogonal duality, multi-species SEP
$(2j)$, multi-species IRW.	
			
MSC: 60K35	Поступила: 16 октября 2021 г.; в окончательном варианте 
24 декабря 2021 г.; опубликована 
26 декабря 2021 г.	
			Язык публикации: английский	
			
DOI:
			10.3842/SIGMA.2021.113