Эта публикация цитируется в
4 статьях
Orthogonal Polynomial Stochastic Duality Functions for Multi-Species SEP$(2j)$ and Multi-Species IRW
Zhengye Zhou Department of Mathematics, Texas A&M University, College Station, TX 77840, USA
Аннотация:
We obtain orthogonal polynomial self-duality functions for multi-species version of the symmetric exclusion process (SEP
$(2j)$) and the independent random walker process (IRW) on a finite undirected graph. In each process, we have
$n>1$ species of particles. In addition, we allow up to
$2j$ particles to occupy each site in the multi-species SEP
$(2j)$. The duality functions for the multi-species SEP
$(2j)$ and the multi-species IRW come from unitary intertwiners between different
$*$-representations of the special linear Lie algebra
$\mathfrak{sl}_{n+1}$ and the Heisenberg Lie algebra
$\mathfrak{h}_n$, respectively. The analysis leads to multivariate Krawtchouk polynomials as orthogonal duality functions for the multi-species SEP
$(2j)$ and homogeneous products of Charlier polynomials as orthogonal duality functions for the multi-species IRW.
Ключевые слова:
orthogonal duality, multi-species SEP$(2j)$, multi-species IRW.
MSC: 60K35 Поступила: 16 октября 2021 г.; в окончательном варианте
24 декабря 2021 г.; опубликована
26 декабря 2021 г.
Язык публикации: английский
DOI:
10.3842/SIGMA.2021.113