RUS  ENG
Полная версия
ЖУРНАЛЫ // Symmetry, Integrability and Geometry: Methods and Applications // Архив

SIGMA, 2021, том 17, 113, 11 стр. (Mi sigma1795)

Эта публикация цитируется в 4 статьях

Orthogonal Polynomial Stochastic Duality Functions for Multi-Species SEP$(2j)$ and Multi-Species IRW

Zhengye Zhou

Department of Mathematics, Texas A&M University, College Station, TX 77840, USA

Аннотация: We obtain orthogonal polynomial self-duality functions for multi-species version of the symmetric exclusion process (SEP$(2j)$) and the independent random walker process (IRW) on a finite undirected graph. In each process, we have $n>1$ species of particles. In addition, we allow up to $2j$ particles to occupy each site in the multi-species SEP$(2j)$. The duality functions for the multi-species SEP$(2j)$ and the multi-species IRW come from unitary intertwiners between different $*$-representations of the special linear Lie algebra $\mathfrak{sl}_{n+1}$ and the Heisenberg Lie algebra $\mathfrak{h}_n$, respectively. The analysis leads to multivariate Krawtchouk polynomials as orthogonal duality functions for the multi-species SEP$(2j)$ and homogeneous products of Charlier polynomials as orthogonal duality functions for the multi-species IRW.

Ключевые слова: orthogonal duality, multi-species SEP$(2j)$, multi-species IRW.

MSC: 60K35

Поступила: 16 октября 2021 г.; в окончательном варианте 24 декабря 2021 г.; опубликована 26 декабря 2021 г.

Язык публикации: английский

DOI: 10.3842/SIGMA.2021.113



Реферативные базы данных:
ArXiv: 2110.07042


© МИАН, 2024