RUS  ENG
Полная версия
ЖУРНАЛЫ // Symmetry, Integrability and Geometry: Methods and Applications // Архив

SIGMA, 2022, том 18, 003, 42 стр. (Mi sigma1798)

Эта публикация цитируется в 2 статьях

A Unified View on Geometric Phases and Exceptional Points in Adiabatic Quantum Mechanics

Eric J. Papab, Daniël Boera, Holger Waalkensb

a Van Swinderen Institute, University of Groningen, 9747 AG Groningen, The Netherlands
b Bernoulli Institute, University of Groningen, P.O. Box 407, 9700 AK Groningen, The Netherlands

Аннотация: We present a formal geometric framework for the study of adiabatic quantum mechanics for arbitrary finite-dimensional non-degenerate Hamiltonians. This framework generalizes earlier holonomy interpretations of the geometric phase to non-cyclic states appearing for non-Hermitian Hamiltonians. We start with an investigation of the space of non-degenerate operators on a finite-dimensional state space. We then show how the energy bands of a Hamiltonian family form a covering space. Likewise, we show that the eigenrays form a bundle, a generalization of a principal bundle, which admits a natural connection yielding the (generalized) geometric phase. This bundle provides in addition a natural generalization of the quantum geometric tensor and derived tensors, and we show how it can incorporate the non-geometric dynamical phase as well. We finish by demonstrating how the bundle can be recast as a principal bundle, so that both the geometric phases and the permutations of eigenstates can be expressed simultaneously by means of standard holonomy theory.

Ключевые слова: adiabatic quantum mechanics, geometric phase, exceptional point, quantum geometric tensor.

MSC: 81Q70, 81Q12, 55R99

Поступила: 23 июля 2021 г.; в окончательном варианте 28 декабря 2021 г.; опубликована 13 января 2022 г.

Язык публикации: английский

DOI: 10.3842/SIGMA.2022.003



Реферативные базы данных:
ArXiv: 2107.02497


© МИАН, 2024