Эта публикация цитируется в
2 статьях
Ladder Operators and Hidden Algebras for Shape Invariant Nonseparable and Nondiagonalizable Models with Quadratic Complex Interaction. I. Two-Dimensional Model
Ian Marquettea,
Christiane Quesneb a School of Mathematics and Physics, The University of Queensland,
Brisbane, QLD 4072, Australia
b Physique Nucléaire Théorique et Physique Mathématique, Université Libre de Bruxelles, Campus de la Plaine CP229, Boulevard du Triomphe, B-1050 Brussels, Belgium
Аннотация:
A shape invariant nonseparable and nondiagonalizable two-dimensional model with quadratic complex interaction, first studied by Cannata, Ioffe, and Nishnianidze, is re-examined with the purpose of exhibiting its hidden algebraic structure. The two operators
$A^+$ and
$A^-$, coming from the shape invariant supersymmetrical approach, where
$A^+$ acts as a raising operator while
$A^-$ annihilates all wavefunctions, are completed by introducing a novel pair of operators
$B^+$ and
$B^-$, where
$B^-$ acts as the missing lowering operator. These four operators then serve as building blocks for constructing
${\mathfrak{gl}}(2)$ generators, acting within the set of associated functions belonging to the Jordan block corresponding to a given energy eigenvalue. This analysis is extended to the set of Jordan blocks by constructing two pairs of bosonic operators, finally yielding an
${\mathfrak{sp}}(4)$ algebra, as well as an
${\mathfrak{osp}}(1/4)$ superalgebra. Hence, the hidden algebraic structure of the model is very similar to that known for the two-dimensional real harmonic oscillator.
Ключевые слова:
quantum mechanics, complex potentials, pseudo-Hermiticity, Lie algebras, Lie superalgebras.
MSC: 81Q05,
81Q60,
81R12,
81R15 Поступила: 1 сентября 2021 г.; в окончательном варианте
3 января 2022 г.; опубликована
14 января 2022 г.
Язык публикации: английский
DOI:
10.3842/SIGMA.2022.004