RUS  ENG
Полная версия
ЖУРНАЛЫ // Symmetry, Integrability and Geometry: Methods and Applications // Архив

SIGMA, 2022, том 18, 008, 24 стр. (Mi sigma1803)

Simplified Forms of the Transition Probabilities of the Two-Species ASEP with Some Initial Orders of Particles

Eunghyun Lee, Temirlan Raimbekov

Department of Mathematics, Nazarbayev University, Nur-sultan, Kazakhstan

Аннотация: It has been known that the transition probability of the single species ASEP with $N$ particles is expressed as a sum of $N!$ $N$-fold contour integrals which are related to permutations in the symmetric group $S_N$. On other hand, the transition probabilities of the multi-species ASEP, in general, may be expressed as a sum of much more terms than $N!$. In this paper, we show that if the initial order of species is given by $2\cdots 21$, $12\cdots 2$, $1\cdots 12$ or $21\cdots 1$, then the transition probabilities can be expressed as a sum of at most $N!$ contour integrals, and provide their formulas explicitly.

Ключевые слова: multi-species ASEP, transition probability, Bethe ansatz, symmetric group.

MSC: 82C22, 60J27

Поступила: 15 апреля 2021 г.; в окончательном варианте 24 января 2022 г.; опубликована 29 января 2022 г.

Язык публикации: английский

DOI: 10.3842/SIGMA.2022.008



Реферативные базы данных:
ArXiv: 2104.06471


© МИАН, 2024