RUS  ENG
Полная версия
ЖУРНАЛЫ // Symmetry, Integrability and Geometry: Methods and Applications // Архив

SIGMA, 2022, том 18, 025, 78 стр. (Mi sigma1819)

Эта публикация цитируется в 2 статьях

Unrestricted Quantum Moduli Algebras. I. The Case of Punctured Spheres

Stéphane Baseilhac, Philippe Roche

IMAG, Univ Montpellier, CNRS, Montpellier, France

Аннотация: Let $\Sigma$ be a finite type surface, and $G$ a complex algebraic simple Lie group with Lie algebra $\mathfrak{g}$. The quantum moduli algebra of $(\Sigma,G)$ is a quantization of the ring of functions of $X_G(\Sigma)$, the variety of $G$-characters of $\pi_1(\Sigma)$, introduced by Alekseev–Grosse–Schomerus and Buffenoir–Roche in the mid '90s. It can be realized as the invariant subalgebra of so-called graph algebras, which are $U_q(\mathfrak{g})$-module-algebras associated to graphs on $\Sigma$, where $U_q(\mathfrak{g})$ is the quantum group corresponding to $G$. We study the structure of the quantum moduli algebra in the case where $\Sigma$ is a sphere with $n+1$ open disks removed, $n\geq 1$, using the graph algebra of the “daisy” graph on $\Sigma$ to make computations easier. We provide new results that hold for arbitrary $G$ and generic $q$, and develop the theory in the case where $q=\epsilon$, a primitive root of unity of odd order, and $G={\rm SL}(2,\mathbb{C})$. In such a situation we introduce a Frobenius morphism that provides a natural identification of the center of the daisy graph algebra with a finite extension of the coordinate ring $\mathcal{O}(G^n)$. We extend the quantum coadjoint action of De-Concini–Kac–Procesi to the daisy graph algebra, and show that the associated Poisson structure on the center corresponds by the Frobenius morphism to the Fock–Rosly Poisson structure on $\mathcal{O}(G^n)$. We show that the set of fixed elements of the center under the quantum coadjoint action is a finite extension of $\mathbb{C}[X_G(\Sigma)]$ endowed with the Atiyah–Bott–Goldman Poisson structure. Finally, by using Wilson loop operators we identify the Kauffman bracket skein algebra $K_{\zeta}(\Sigma)$ at $\zeta:={\rm i}\epsilon^{1/2}$ with this quantum moduli algebra specialized at $q=\epsilon$. This allows us to recast in the quantum moduli setup some recent results of Bonahon–Wong and Frohman–Kania-Bartoszyńska–Lê on $K_{\zeta}(\Sigma)$.

Ключевые слова: quantum groups, invariant theory, character varieties, skein algebras.

MSC: 16R30, 17B37, 20G42, 57M27, 57R56, 81R50

Поступила: 9 апреля 2021 г.; в окончательном варианте 7 марта 2022 г.; опубликована 29 марта 2022 г.

Язык публикации: английский

DOI: 10.3842/SIGMA.2022.025



Реферативные базы данных:
ArXiv: 1912.02440


© МИАН, 2024