Эта публикация цитируется в
2 статьях
Unrestricted Quantum Moduli Algebras. I. The Case of Punctured Spheres
Stéphane Baseilhac,
Philippe Roche IMAG, Univ Montpellier, CNRS, Montpellier, France
Аннотация:
Let
$\Sigma$ be a finite type surface, and
$G$ a complex algebraic simple Lie group with Lie algebra
$\mathfrak{g}$. The quantum moduli algebra of
$(\Sigma,G)$ is a quantization of the ring of functions of
$X_G(\Sigma)$, the variety of
$G$-characters of
$\pi_1(\Sigma)$, introduced by Alekseev–Grosse–Schomerus and Buffenoir–Roche in the mid '90s. It can be realized as the invariant subalgebra of so-called graph algebras, which are
$U_q(\mathfrak{g})$-module-algebras associated to graphs on
$\Sigma$, where
$U_q(\mathfrak{g})$ is the quantum group corresponding to
$G$. We study the structure of the quantum moduli algebra in the case where
$\Sigma$ is a sphere with
$n+1$ open disks removed,
$n\geq 1$, using the graph algebra of the “daisy” graph on
$\Sigma$ to make computations easier. We provide new results that hold for arbitrary
$G$ and generic
$q$, and develop the theory in the case where
$q=\epsilon$, a primitive root of unity of odd order, and
$G={\rm SL}(2,\mathbb{C})$. In such a situation we introduce a Frobenius morphism that provides a natural identification of the center of the daisy graph algebra with a finite extension of the coordinate ring
$\mathcal{O}(G^n)$. We extend the quantum coadjoint action of De-Concini–Kac–Procesi to the daisy graph algebra, and show that the associated Poisson structure on the center corresponds by the Frobenius morphism to the Fock–Rosly Poisson structure on
$\mathcal{O}(G^n)$. We show that the set of fixed elements of the center under the quantum coadjoint action is a finite extension of
$\mathbb{C}[X_G(\Sigma)]$ endowed with the Atiyah–Bott–Goldman Poisson structure. Finally, by using Wilson loop operators we identify the Kauffman bracket skein algebra
$K_{\zeta}(\Sigma)$ at
$\zeta:={\rm i}\epsilon^{1/2}$ with this quantum moduli algebra specialized at
$q=\epsilon$. This allows us to recast in the quantum moduli setup some recent results of Bonahon–Wong and Frohman–Kania-Bartoszyńska–Lê on
$K_{\zeta}(\Sigma)$.
Ключевые слова:
quantum groups, invariant theory, character varieties, skein algebras.
MSC: 16R30,
17B37,
20G42,
57M27,
57R56,
81R50 Поступила: 9 апреля 2021 г.; в окончательном варианте
7 марта 2022 г.; опубликована
29 марта 2022 г.
Язык публикации: английский
DOI:
10.3842/SIGMA.2022.025