RUS  ENG
Полная версия
ЖУРНАЛЫ // Symmetry, Integrability and Geometry: Methods and Applications // Архив

SIGMA, 2007, том 3, 056, 30 стр. (Mi sigma182)

Эта публикация цитируется в 4 статьях

Macdonald Polynomials and Multivariable Basic Hypergeometric Series

Michael J. Schlosser

Fakultät für Mathematik, Universität Wien, Nordbergstraße 15, A-1090 Vienna, Austria

Аннотация: We study Macdonald polynomials from a basic hypergeometric series point of view. In particular, we show that the Pieri formula for Macdonald polynomials and its recently discovered inverse, a recursion formula for Macdonald polynomials, both represent multivariable extensions of the terminating very-well-poised ${}_6\phi_5$ summation formula. We derive several new related identities including multivariate extensions of Jackson's very-well-poised ${}_8\phi_7$ summation. Motivated by our basic hypergeometric analysis, we propose an extension of Macdonald polynomials to Macdonald symmetric functions indexed by partitions with complex parts. These appear to possess nice properties.

Ключевые слова: Macdonald polynomials; Pieri formula; recursion formula; matrix inversion; basic hypergeometric series; ${}_6\phi_5$ summation; Jackson’s ${}_8\phi_7$ summation; $A_{n-1}$ series.

MSC: 33D52; 15A09; 33D67

Поступила: 21 ноября 2006 г.; опубликована 30 марта 2007 г.

Язык публикации: английский

DOI: 10.3842/SIGMA.2007.056



Реферативные базы данных:
ArXiv: math.CO/0611639


© МИАН, 2024