RUS  ENG
Полная версия
ЖУРНАЛЫ // Symmetry, Integrability and Geometry: Methods and Applications // Архив

SIGMA, 2022, том 18, 032, 8 стр. (Mi sigma1826)

Properties of the Non-Autonomous Lattice Sine-Gordon Equation: Consistency around a Broken Cube Property

Nobutaka Nakazono

Institute of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho Koganei, Tokyo 184-8588, Japan

Аннотация: The lattice sine-Gordon equation is an integrable partial difference equation on ${\mathbb Z}^2$, which approaches the sine-Gordon equation in a continuum limit. In this paper, we show that the non-autonomous lattice sine-Gordon equation has the consistency around a broken cube property as well as its autonomous version. Moreover, we construct two new Lax pairs of the non-autonomous case by using the consistency property.

Ключевые слова: lattice sine-Gordon equation, Lax pair, integrable systems, partial difference equations.

MSC: 37K10, 39A14, 39A45

Поступила: 3 февраля 2022 г.; в окончательном варианте 14 апреля 2022 г.; опубликована 20 апреля 2022 г.

Язык публикации: английский

DOI: 10.3842/SIGMA.2022.032



Реферативные базы данных:
ArXiv: 2201.11264


© МИАН, 2024