RUS  ENG
Полная версия
ЖУРНАЛЫ // Symmetry, Integrability and Geometry: Methods and Applications // Архив

SIGMA, 2022, том 18, 036, 20 стр. (Mi sigma1830)

Эта публикация цитируется в 1 статье

A Combinatorial Description of Certain Polynomials Related to the XYZ Spin Chain. II. The Polynomials $p_n$

Linnea Hietalaab

a Department of Mathematical Sciences, Chalmers University of Technology and University of Gothenburg, 412 96 Gothenburg, Sweden
b Department of Mathematics, Uppsala University, Box 480, 751 06 Uppsala, Sweden

Аннотация: By specializing the parameters in the partition function of the 8VSOS model with domain wall boundary conditions and diagonal reflecting end, we find connections between the three-color model and certain polynomials $p_n(z)$, which are conjectured to be equal to certain polynomials of Bazhanov and Mangazeev, appearing in the eigenvectors of the Hamiltonian of the supersymmetric XYZ spin chain. This article is a continuation of a previous paper where we investigated the related polynomials $q_n(z)$, also conjectured to be equal to polynomials of Bazhanov and Mangazeev, appearing in the eigenvectors of the supersymmetric XYZ spin chain.

Ключевые слова: eight-vertex SOS model, domain wall boundary conditions, reflecting end, three-color model, XYZ spin chain, polynomials, positive coefficients.

MSC: 82B23, 05A15, 33E17

Поступила: 6 августа 2021 г.; в окончательном варианте 29 апреля 2022 г.; опубликована 15 мая 2022 г.

Язык публикации: английский

DOI: 10.3842/SIGMA.2022.036



Реферативные базы данных:
ArXiv: 2104.04651


© МИАН, 2024