RUS  ENG
Полная версия
ЖУРНАЛЫ // Symmetry, Integrability and Geometry: Methods and Applications // Архив

SIGMA, 2022, том 18, 040, 18 стр. (Mi sigma1834)

Dirac Operators for the Dunkl Angular Momentum Algebra

Kieran Calverta, Marcelo De Martinob

a Department of Mathematics, University of Manchester, UK
b Department of Electronics and Information Systems, University of Ghent, Belgium

Аннотация: We define a family of Dirac operators for the Dunkl angular momentum algebra depending on certain central elements of the group algebra of the Pin cover of the Weyl group inherent to the rational Cherednik algebra. We prove an analogue of Vogan's conjecture for this family of operators and use this to show that the Dirac cohomology, when non-zero, determines the central character of representations of the angular momentum algebra. Furthermore, interpreting this algebra in the framework of (deformed) Howe dualities, we show that the natural Dirac element we define yields, up to scalars, a square root of the angular part of the Calogero–Moser Hamiltonian.

Ключевые слова: Dirac operators, Calogero–Moser angular momentum, rational Cherednik algebras.

MSC: 16S37, 17B99, 20F55, 81R12

Поступила: 10 ноября 2021 г.; в окончательном варианте 24 мая 2022 г.; опубликована 1 июня 2022 г.

Язык публикации: английский

DOI: 10.3842/SIGMA.2022.040



Реферативные базы данных:
ArXiv: 2110.01353


© МИАН, 2024