RUS  ENG
Полная версия
ЖУРНАЛЫ // Symmetry, Integrability and Geometry: Methods and Applications // Архив

SIGMA, 2022, том 18, 042, 39 стр. (Mi sigma1836)

Эта публикация цитируется в 3 статьях

Relating Stated Skein Algebras and Internal Skein Algebras

Benjamin Haioun

Institut de Mathématiques de Toulouse, France

Аннотация: We give an explicit correspondence between stated skein algebras, which are defined via explicit relations on stated tangles in [Costantino F., Lê T.T.Q., arXiv:1907.11400], and internal skein algebras, which are defined as internal endomorphism algebras in free cocompletions of skein categories in [Ben-Zvi D., Brochier A., Jordan D., J. Topol. 11 (2018), 874–917, arXiv:1501.04652] or in [Gunningham S., Jordan D., Safronov P., arXiv:1908.05233]. Stated skein algebras are defined on surfaces with multiple boundary edges and we generalise internal skein algebras in this context. Now, one needs to distinguish between left and right boundary edges, and we explain this phenomenon on stated skein algebras using a half-twist. We prove excision properties of multi-edges internal skein algebras using excision properties of skein categories, and agreeing with excision properties of stated skein algebras when $\mathcal{V} = \mathcal{U}_{q^2}(\mathfrak{sl}_2)-{\rm mod}^{\rm fin}$. Our proofs are mostly based on skein theory and we do not require the reader to be familiar with the formalism of higher categories.

Ключевые слова: quantum invariants, skein theory, category theory.

MSC: 57K16, 18M15

Поступила: 7 октября 2021 г.; в окончательном варианте 25 мая 2022 г.; опубликована 11 июня 2022 г.

Язык публикации: английский

DOI: 10.3842/SIGMA.2022.042



Реферативные базы данных:
ArXiv: 2104.13848


© МИАН, 2024